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Higher Order Ito Product Formula and Generators
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P. Beazley Cohen,' T. M. W. Eyre,? and R. L. Hudson?

Received March 28, 1995

A simple combinatorial formula is found for the product of two iterated quantum
stochastic integrals, and used to find conditions that such an integral represent
a unitary-valued or *-algebra homomorphism-valued process.

1. HIGHER ORDER ITO PRODUCT FORMULA

The integrators of multidimensional quantum stochastic calculus can be
parametrized by elements of the space $ consisting of linear transformations
H in the finite-dimensional Hilbert space C €@ . Such a transformation
decomposes naturally (Parthasarathy, 1992) into four components comprising
a complex number, a vector in ¥, a linear form on ¥, and a linear transforma-
tion on ¥, corresponding to the time, creation, annihilation, and multidimen-
sional gauge components of the integrator. The corresponding integrator
process A" consists of operators in the Fock space ¥ = I'(L*R,) ® ¥)
whose matrix elements between exponential vectors are given by

(e(f), Alle(g)) = f (Fes), Ha(s)) ds (e, e(2))
4]

where foru € ¥, i = (1, u) € C D K. We have (A} = A where H
is the usual adjoint and (A)' the restriction of the adjoint to the exponential
domain. By the quantum Ito formula (Hudson and Parthasarathy, 1984) we
have

dAl dAK = dAK (1.1)
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where
HOK = HEK

E being the projector on the canonical embedding of ¥ in C @ K. When
equipped with the usual adjunction and the associative multiplication © we
call § the Ito algebra. By embedding them in the Fock space (Parthasarathy,
1992), product formulas for other stochastic calculus theories correspond to
subalgebras of $.

In this paper we are interested in iterated integrals such as

L(H,...,H,) = J dA(ty) <+ dAPm(z,,)
0t < e <ty <t
Note that
LHY, ...,H) =LH, ... H) (1.2)

There is a product formula for such integrals expressed in the following
theorem, which is proved using (1.1) by induction on m + n [the case of
purely gauge integrals was given in Hudson and Parthasarathy (1993)].

Theorem. We have

I(H]a sy Hm)I(Hm+h R ] Hm+n)
m+n
= > > KHp,...,Hp) (1.3)
r=max{mn} PecP,
where P, is the set of ordered partitions P = (P, ..., P)of (1,...,m +
n) into r subsets which are either singletons or pairs {p, ¢} with p e {1,
...,mlandg € {m+ 1,...,m + n} in which {1, ..., m} and {m + 1,
.., m + n} occur in their natural orders, and H,,,, = H, © H,,.

Since I(H,, ..., H,) =I(H,® --- & H,) is linear in Hy, . .., H,, we

may extend / to a linear map from elements of the tensor space
T=ChIDIRIDIRIRID---
over $ to processes in Fock space, in such a way that
I{A)(B) = KA * B), I(AT) = KA (1.4)

where the associative multiplication * is determined by (1.3) and the involu-
tion on tensors is inherited from that on $. Note also that * is well defined
on the extended tensor space (in which infinitely many homogeneous compo-
nents may be nonzero) even though the integral  may no longer be defined.
We denote the extended tensor space equipped with the product * and the
involution 1 inherited from $ by I'($).
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In most applications of quantum stochastic calculus there is given an
initial unital t-algebra «. We define the multiplication * in the tensor product
['(¥) = o ® I'($) by the natural product rule (a @ A) * (b @ B) = ab @
A * B, and equip it with the product involution. The integration map [
ampliates to the tensor product with &4, so that (1.4) remains true for integrands
in o ® I'($) when the integrals are defined.

2. EVOLUTION GENERATORS

LetR = {k; < --- <kJ}and S = {I; < --- <[} be possibly empty
sets whose union is {1, ..., n}, with respectively »r = |IR| and s = S|
elements. For a nonnegative integer n let 4 @ $% =  ifn = 0 and 4 ®
IR - QF (nfactors) if n >0.Leta € A @ I® and b € A R 9%,
respectively, and define an element a®bS of 4 ® $®» by bilinear extension
of the rule for product elements:

@Rad Q- Qa° RN R R =I"Qc R "

where ¢® = a%° andforj=1,...,n,cisa’ifj,=k e RN S, b™ifj
=/, e RRNS anda’' 0b™ifj =k =1, e RN S (complements are in
{1, ..., n}). Note that by taking either R or S empty we obtain a bimodule
action of o on each s{ ® $®». Using (1.3), the product a * b = ¢ = (cy,
¢, - ..) of elements of I'($) can then be expressed in component form as

c, = 2, afbs (2.1)

where, forn = 0, 1, 2, ..., the sum is over the 3" choices of ordered pairs
of subsets R and S whose union is {1, ..., n}.

Whether or not /(«) exists, conditions on u € 1($) formally equivalent
to the unitarity of the process I(u) are that

uxu =utxu=(,00..)

where 1 is the identity element of 4. Evidently such elements form a group
G under *. Moreover, u € G if and only if its components satisfy

WulS = Y ufui=38,,1, n=0,1... 22

RUSZ{Lwun) RUS={1,....n}

For N = 0, 1, ... let us denote by Gy the set of sequences (i, ..., uy),
with each u, € 8 ® $%», and such that (2.2) holds forn = 0, ..., N. Then
Gy is a group under the composition defined by (2.1); we call its elements
Nth-order evolution generators. Can such a generator (4o, . . . , uy) be extended
to an element of G?

This question can be answered affirmatively in the case of purely gauge
stochastic integrals (Hudson and Parthasarathy, 1993). Indeed, let $, be the
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subalgebra of § consisting of linear transformations on . Then in this case
ue 4@ I, j=1,...,N. The projector E of Section 1 is just the identity
of $g, so that H © K = HK for H, K e $,. We may write the condition on
the additional element uy, that (ug, .. ., Uy, ty,) € Gy, in the form

[2 uf@ ® ESV =% 4y T ulf(d @ E®v R + ufy ] = 1@ ESv
2.3)

together with the corresponding relations with all u’s and u” exchanged. In
(2.3) the summation is over all proper subsets R of {1, ..., N + 1} and
complements are in the latter set. E% means E® - - - @ E (j factors). Equation
(2.3) says that uy,, differs from a unitary element of § @ $§¥+! by a linear
combination of elements formed from (u,, ..., uy). Provided that each &
® $§¥+1 contains unitary elements, which will be so if o does, extension
is always possible.

3. FLOW GENERATORS
For the linear map j: s — ['($) to satisfy the relations
Jjoy) = jxy *j(y,  jeH =jw,  xyed
corresponding to *-algebra morphism (flow) properties of J = I(j) (if it

exists), its components must satisfy

Wy = }jf(x)jf(y) 3.1

RUS={1,..n

and
Jaxh) = ju(0)? (3.2)

for arbitrary x, y € . Denote by Z the space of such maps j and by Zy the
space of Nth-order flow generators (jo, ..., jx), where j,; A — A @ $%n
is linear and satisfies (3.1) and (3.2) for all n = N. The extension question
for such generators can again be answered affirmatively in the purely gauge
case. If (jo, . . ., jn) € Zy, then (o, . . ., jns1) € Zys if and only if the linear
F-map jy,, satisfies

[ /R @ EBN+1-nR + ju (0]
X [3 iR (A ® ESv+ =R + ju (3]
= iRay)A @ EBv+1-nR + iy (xy)

for arbitrary x, y € o, where the sum is over all proper subsets of {1, ...,
N + 1}. Evidently there is a plentiful supply of such maps jy,,, differing
from unital f-algebra morphisms by maps already determined.
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4. ACTION OF EVOLUTION GENERATORS ON FLOW
GENERATORS

The group G acts on the space Z by the action
u()x) = u* j(x) * uf

In terms of components

u(j)ax) = > uf joul™
RUSUT={1,....n}

Evidently the same formula gives an action of each Gy on Zy.

5. EXAMPLES
Consider the first-order evolution generator (1, u,), where
w ol +uwul =ul +u+ wu, =0

This may be extended to the element u = (1, uy, u{"Muf?, u{u{uf3, )
of G for which U = I(u) is the iterative solution of the stochastic differen-
tial equation

dU = U, Uuo) =1 5.1

Existence, uniqueness, and unitarity of the solution of (5.1) were proved in
Hudson and Parthasarathy (1984) in the case when the components of u; in
s are norm bounded.

Similarly the first-order flow generator (id, j;), where the t-map j
satisfies

Jxy) = i@y + x5, (y) + ji0)j(y)

extends to the element j = (id, j, (j; ® id)ji, (j, ® id Q id)(j, @ id)j,, .. .)
of Z for which J = I(j) is the quantum stochastic flow satisfying

dIx) = J ® idj(x), JoX) = x

for which an existence theorem was proved in Evans (1989) in the
bounded case.

An amusing example of a different kind is found by taking the trivial
initial algebra C and seeking a flow generator j = (jg, j;, . . .) of the form

Jnx) = xe,  (x € C)

where e, = ¢} is an element of $ ® «-- ® $" (n factors). In the pure gauge
case, (3.1) is satisfied if

e, = (—1)e® - --- Qe
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where e is an idempotent in #, as is easily seen using the identity

(D= ¥  (=l=1y

RUS={1,....n}
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